
72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.

Copyright ©2021 by the International Astronautical Federation (IAF). All rights reserved.

IAC-21,D5,1,x65885 Page 1 of 11

IAC-21,D5,1,x65885

The Architecture of a Safe Low Cost Earth Based Lunar Landing Test Bed for the Validation of

Experimental Flight and new Technologies

Michael Smata*, David Barnhartb, Antariksh Narainc, Isabel Brielerd, Dimitri Gianousopolouse, Anirudh

Sharadf, Reese Weingaertnerg, Hubert Wangh, Jose Orozcoi, Thanh Tranj, Shreya Nagpalk, Noah Fosterl

a University of Southern California, Los Angeles, California, 90089, msmat@isi.edu
b University of Southern California, Los Angeles, California, 90089, barnhart@isi.edu
c University of Southern California, Los Angeles, California, 90089, antariks@usc.edu
d University of Southern California, Los Angeles, California, 90089, brieler@usc.edu
e University of Southern California, Los Angeles, California, 90089, gianouso@usc.edu
f University of Southern California, Los Angeles, California, 90089, asharad@usc.edu
g University of Southern California, Los Angeles, California, 90089, weingaer@usc.edu
h University of California, San Diego, La Jolla, California, 92093, hwwang@ucsd.edu
i University of California, San Diego, La Jolla, California, 92093, jmo16@ucsd.edu
j University of California, Berkeley, Berkeley, California, 94720, thanhtran@berkeley.edu
k University of California, Berkeley, Berkeley, California, 94720, shreyan@berkeley.edu
l Wichita State University, Wichita, Kansas, 67260, nafoster@schockers.wichita.edu

* Corresponding Author

Abstract

A propulsive landing on the surface of an extraterrestrial body requires a robust vehicle with a guidance,

navigation and control (GNC) system that is reliable, efficient and repeatable. Developing algorithms for these

systems involves the creation of a mathematical model to simulate reality, and the testing of physical hardware to

validate the results produced by the simulations. Unique design considerations for the structures are required for off-

nominal flight in 1G to avoid damage yet still allow the vehicle to re-fly quickly. The validation of experimental

control algorithms requires the development of necessary infrastructure to iterate through a virtual to physical testing

process, which is both time and cost intensive. The University of Southern California’s (USC) Space Engineering

Research Center (SERC) in collaboration with the University of California at Berkeley (UCB) and the University of

California at San Diego (UCSD) has developed such an infrastructure for an earth-based lunar landing test bed

capable of validating experimental GNC algorithms with measures designed into both the hardware and software of

the vehicle to mitigate failures in the event of off nominal flight conditions, allowing for innovative landing solutions

to be repeatedly tested at a higher rate. The Lunar Entry Approach Platform For Research On the Ground

(LEAPFROG) is a flight vehicle funded under a NASA Artemis STEM Competition Pilot award with the goal of

supporting a nation-wide competition among universities. Powered by a central 300 N thrust turbine jet engine, the

vehicle includes a cold gas attitude control system (ACS) to maintain stability, and a gimbal controlled by linear

actuators to achieve thrust vector control (TVC) responsible for translation of the vehicle. Structurally, a number of

innovations are built in for safety and reliability, including a composite based chassis and roll cage designed using

Ansys Composite PrepPost (ACP) to support and protect the critical hardware, as well as a mechanical fuse allowing

the frame and legs to avoid excessive loading in the event of a free fall. Additionally, the software architecture

monitors competition teams’ inputs during flight that can override the controls and land the vehicle safely in the

event of a policy violation. This paper will expand on the design and analyses of the features implemented in the

structural and software designs that ensure a safe validation of innovative GNC algorithms on this lunar landing

platform for use worldwide as a low-cost testbed for advanced technology testing.

Keywords: lunar lander, control systems, lander structures, NASA Artemis Challenge

1. Introduction

1.1 NASA Artemis Challenge

NASA’s Artemis Student Challenges are a set of

NASA-funded competitions and initiatives that aim to

engage undergraduate and graduate students and

increase interest in the NASA Artemis Mission. These

challenges revolve around finding solutions to common

problems and anticipated hurdles during space flight

and exploration.

The LEAPFROG (Lunar Entry and Approach

Platform for Research On Ground) challenge was

organized by the University of California, San Diego in

collaboration with the University of Southern

California’s Space Engineering Research Center

(SERC) and the University of California, Berkeley’s

mailto:msmat@isi.edu
mailto:barnhart@isi.edu
mailto:antariks@usc.edu
mailto:brieler@usc.edu
mailto:gianouso@usc.edu
mailto:asharad@usc.edu
mailto:weingaer@usc.edu
mailto:hwwang@ucsd.edu
mailto:jmo16@ucsd.edu
mailto:thanhtran@berkeley.edu
mailto:shreyan@berkeley.edu
mailto:nafoster@schockers.wichita.edu

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.

Copyright ©2021 by the International Astronautical Federation (IAF). All rights reserved.

IAC-21,D5,1,x65885 Page 2 of 11

Space Sciences Laboratory. This challenge aimed to

engage undergraduate and graduate students across the

nation in a Lunar Lander skills competition, wherein

competitors gain and illustrate the ability to control a

lunar lander prototype.

The first version of LEAPFROG, Generation-0, was

built by undergraduate students at USC’s SERC in 2006

as a reusable ground-based flight simulator for lunar

lander technology testing. Since then the project cycled

through various iterations, changing designs based on

project requirements at each stage. This version of

LEAPFROG made for the NASA Artemis Challenge

aimed to iterate on the past versions of the vehicle and

create a deliverable that could be distributed to teams of

students across the country in a safe and educational

way.

1.2 Vehicle Design Overview and Approach

To promote the vehicle’s ability to safely validate

experimental flight control algorithms, LEAPFROG

was designed with five major subsystems: structures,

propulsion, attitude control system, software, and

avionics. Each subsystem was developed in accordance

to the testing schedule created at the beginning of every

semester. Priority for the team’s resources were given to

those systems which were required for the most

immediate testing campaign, which isolated the

subsystems from one another during their development,

allowing each to be fully validated prior to its

integration with the vehicle and other subsystems. This

approach aligns with the primary goal of the vehicle: to

create a test bed with features embedded into the design

that mitigate failures when off-nominal flight conditions

occur.

Figure 1 and Figure 2 show two views of the

vehicle with the various subsystems and its global

coordinate system which will be referred to throughout

this paper.

Figure 1: Side view of vehicle with labelled coordinate systems

2. Vehicle Design

2.1 Structures

The structure was designed such that all

hardware required for the various subsystems could be

rigidly fixed to the vehicle in their appropriate positions

while remaining under the maximum weight as

determined by the maximum engine thrust and flight

performance goals. To do so, the structure was designed

with four main components: its chassis, mounting

platforms, legs, and roll cage. All of which were made

from composite materials to maximize the vehicle’s

strength to weight ratio.

Figure 2: Aerial view of vehicle with labelled coordinate systems

The chassis consists of COTS half-inch, twill

weave carbon fiber tubes from Rockwest configured in

an octagonal structure as seen in Figure 3. On the first

level, the central octagon supports the thrust of the

engine, and the outer octagon supports the reaction

forces of the linear actuators used for thrust vectoring

the engine as well as providing mounting points for the

struts used to connect the top layer to the bottom layer.

The primary function of the top layer is to mount the

engine fuel tanks, attitude control system air tanks, and

avionics. The tubes were connected to each other using

commercial off the shelf (COTS) threaded and

unthreaded clevis connectors from Dragon Plate.

Figure 3: Assembled carbon fiber chassis with legs integrated

A chassis structural analysis was performed

using an ABAQUS truss analysis simulation to

determine the stresses within the chassis when the

vehicle free falls from a 5-meter height. The result

showed that the vertical carbon fiber struts experience

significant tension and bending from the pulling of the

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.

Copyright ©2021 by the International Astronautical Federation (IAF). All rights reserved.

IAC-21,D5,1,x65885 Page 3 of 11

strings attached to the legs. This led to the addition of

the mechanical fuses which will disconnect the strings

and protect the chassis in the event of a hard landing.

The mounting platforms provide a greater

surface area to which the hardware can be fastened and

adds rigidity to the chassis against moments in the x and

y directions as established by the coordinate system in

Figure 2. Both platforms are composite sandwiches

manufactured in house with five pound density foam

from FiberGlassSupply and two layers of fiberglass

fabric impregnated with two part epoxy resin from

WestSystems. The lay-up sandwich was placed under

vacuum for 3 hours until cured. The fiberglass allows

fasteners to clamp flanged mounts to the platforms

without penetrating the foam.

A protective vehicle roll cage was designed

consisting of both an upper and lower structure. The

upper roll cage was designed to protect the various

avionics hardware and fuel tanks mounted on the top

shelf of the vehicle in the event of a roll over. The lower

roll cage was designed to protect the jet engine and

bottom platform from being damaged in the event of the

mechanical fuses disengaging. Both roll cage structures

were analyzed using ABAQUS truss analysis simulation

to confirm their protective capabilities in the intended

situations.

2.2 Vertical and Horizontal Propulsion

LEAPFROG utilizes a JetCat P300 Pro engine, shown

in Figure 4, to enable it to lift off the ground and

simulate various levels of gravity. This is a COTS air-

breathing jet turbine engine fuelled by kerosene with the

performance metrics as shown in Table 1.

Figure 4: JetCat P300 Pro engine

This engine simplifies the propulsion system

due to its integrated design. The JetCat P300 Pro houses

within itself the ECU, fuel pump, start valves, fuel filter,

starter, pressure sensor, igniter, and glow plugs. Using

an electric starter required a large energy output and

therefore battery but allowed space and mass to be used

on an auxiliary starting system. The only propulsion-

related hardware required to be integrated onto the

vehicle is the remaining parts needed to complete the

fuel system.

Table 1: Performance metrics for JetCat P300 Pro engine

The fuel system, as shown in the aerial view of

the vehicle in Figure 5, consists of two Jet Model

Products (JMP) T-33 fuel tank sets, COTS tanks made

from fiberglass by Jet Tech. The four primary tanks are

positioned about the center axis of the vehicle, forming

a rough toroidal configuration about the air-inlet hole on

the top platform. This allows the center of gravity of the

fuel system to remain aligned with the center axis of the

vehicle. However, this is only true assuming that the

fuel draw distribution is even across the four tanks. To

ensure this would occur, the fuel lines cut from each

tank are the same length, resulting in an equal pressure

drop over the path traveled from each tank.

Additionally, the filling procedure of the tanks ensures

that each begins with the same mass of fuel. During the

hover flight testing campaign, tests were conducted to

validate this assumption.

Figure 5: Aerial view of fuel plumbing integrated on vehicle

Each tank has a capacity of 52 ounces. This

volume would allow for a flight time of approximately 8

minutes. However, due to weight limitations, each tank

is only filled with 0.8 kg of fuel resulting in a flight time

of approximately 3 minutes. To decrease weight and

complexity, no sensors were used to monitor the fuel

levels during flight. Instead, a flight time calculator was

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.

Copyright ©2021 by the International Astronautical Federation (IAF). All rights reserved.

IAC-21,D5,1,x65885 Page 4 of 11

created to determine how much fuel remained in the

tanks during tests. Mounting platforms for the tanks

were 3D printed to match the shape of the tanks,

allowing them to be strapped directly to the platforms.

This design made the tanks rigid during flight, but able

to be removed while weighing the tanks during the

fueling process.

To enable the vehicle to translate in X or Y

axes, an in-house manufactured gimbal shown in is used

for thrust vectoring the engine. Consisting of three rings

and including attachment points both to the main

structure and to the linear actuators, this enables the

engine to be controlled in both pitch and yaw.

Figure 6: Gimbal used to thrust vector the engine

2.3 Control Systems

The LEAPFROG control system performs two

primary functions: ensuring the safe flight of the vehicle

and performing legal commanded maneuvers. This

design allows the vehicle to navigate as commanded

through three-dimensional space as directed by the user,

so long as the flight commands provided do not

endanger the vehicle. This design philosophy for the

vehicle control system was implemented to meet the

design goal of providing a safe and reusable platform

for testing and competition surrounding flight software.

 The high-level command architecture of the

LEAPFROG vehicle is split into two actors. The first is

the competition or test code, which controls the gimbal

and throttle of the engine as well as yaw of the vehicle

to autonomously navigate translationally through three

dimensions. The second actor is the vehicle flight

software (FSW), which itself serves two purposes.

Firstly, the FSW constantly actuates the cold gas

subsystem to maintain the roll and pitch of the vehicle at

level. Secondly, the FSW serves as a safety net for the

test code. Because the test or competition code will, by

nature, not be rigorously tested before implementation,

it carries a higher degree of risk than would normally be

acceptable. This is mitigated by allowing the flight

software to automatically override illegal or dangerous

commands provided by the test code. Some examples of

such prohibited commands are putting the vehicle into

too aggressive of a maneuver, or postponing landing

beyond the point at which the vehicle runs out of fuel.

The FSW also allows for manual commands to be sent

in real time from the ground station, overriding the

autonomous modules if it becomes apparent that the

vehicle is behaving unsafely.

 To further isolate test code from the vehicle’s

FSW, the two modules are separated into different

hardware. The FSW is run on a Raspberry Pi controller

while the test code is run on a PX4 capable Cube, or

PixHawk. This decision was made such that even if the

test code were to, for instance, crash the process, the

FSW itself will continue to run and allow the vehicle to

safely land. The autonomous command flow

architecture is shown in Figure 7 below.

Figure 7: Control flow diagram. Flight manager determines whether

control commands sent by PX4 Test Code is legal, and decides to use

either command or built-in automatic control.

Further description of the LEAPFROG control

system begins with detailing variables which the system

must keep track of and control: state variables. The state

variables of the system fall under one of two categories:

commanded state variables, and supplementary state

variables. Commanded state variables are those which

are set to target a desired value, upon which effectors

are utilized to bring the measured value to the desired

value via the implemented control scheme.

Supplemental state variables describe aspects of the

system which influence its behavior and may also be

influenced by setting a desired state, but do not have a

set point commanded. A list of state variables tracked

by the control system is shown in Table 2 below.

To illustrate this nomenclature, an example of

the cold gas system is provided. The set point of the roll

axis is to keep the vehicle level with respect to the

ground. Thus, the roll angle is a commanded state

variable. Cold gas thrusters are utilized to maintain the

vehicle at level, and as the thrusters are fired, the

amount of mass in the air tanks changes. This affects the

dynamics of the vehicle and is kept track of using

pressure transducers. However, the mass of the tanks is

not controlled, so it is a supplementary state variable.

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.

Copyright ©2021 by the International Astronautical Federation (IAF). All rights reserved.

IAC-21,D5,1,x65885 Page 5 of 11

 The LEAPFROG control scheme maintains

safe operations by bounding certain state variables into

a legal range. The legal ranges of certain states – subject

to change – are provided in Table 2. Should the test

code send a command to the flight software that brings

the vehicle outside of these legal ranges, the command

will be overridden, and automatic emergency

procedures will take over. These include righting the

vehicle, slowing translation to a standstill, and

performing a controlled landing.

Table 2: System state variables. Control variables in white boxes,

supplementary state variables in gray boxes.

V_x Translational

velocity in x

2 m/s

V_y Translational

velocity in y

2 m/s

V_z Translational

velocity in z

1.5 m/s

Alt Altitude above

ground

0-6 m

R,P,Y_vehicle Vehicle roll,

pitch, yaw

0, 0, 0-360

degrees

Th_percent Percentage of

total thrust

85-100%

R, P_gimbal Roll and pitch

angle of gimbal

|α,β| < 10

degrees

M_fuel Mass of

kerosene fuel

M > 15%

M_gas (1-4) Mass of any

cold gas tank

M > 15%

The overall control loop of the system can be

broken down into three main sections: sensors, the

control logic, and the effectors. The sensors of the

system update the measured state variables, the control

logic takes in the states and commands to actuate the

effectors appropriately, and the effectors influence the

physical state of the vehicle. The negative feedback

loop continues indefinitely to minimize the error as new

commands arrive and disturbances are imparted to the

system.

 The LEAPFROG control system is generally

divided into two control schemes: engine control for

translation and attitude control for rotation. These two

schemes together have a mutually exclusive, completely

exhaustive control over the six dynamic degrees of

freedom of the vehicle. The negative feedback control

loop including these two control schemes are illustrated

in the figure below.

Figure 8: Sensors, control modules, and effectors visualized in a

control loop.

 Navigation and controlling the translational

motion of the vehicle in flight is the primary goal of the

user-implemented control test code on the Pixhawk. The

Pixhawk will be fed filtered altitude and acceleration

data from the sensors, and can output commands to

affect the gimbal angle and the engine thrust.

 In the case that a state’s bounds have been

exceeded, the flight manager will instead enable the

flight software’s automated engine control and will

bypass the commands sent from the Pixhawk. The

automated controller (FSW Engine Control) will

attempt to lower the vehicle’s translational velocity and

initiate a landing sequence. This architecture is

visualized in Figure 9 below.

Figure 9: Engine control loop illustrated. The altitude control is shown

in red, while the X / Y velocity control is shown in orange.

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.

Copyright ©2021 by the International Astronautical Federation (IAF). All rights reserved.

IAC-21,D5,1,x65885 Page 6 of 11

 The cold gas system, or attitude control system

(ACS) governs the rotational degrees of freedom of the

vehicle: roll, pitch, and yaw. The goal of the controller

is to maintain the vehicle in level flight and oriented in

the correct direction by actuating the vehicle’s six cold

gas thrusters. Roll and pitch control are outside the

scope of the PixHawk controller and are always

controlled autonomously.

The ACS feedback loop begins with sensor

measurement via the onboard WT61 IMU. This sensor

has a built-in integrator and Kalman Filter to provide

absolute angle feedback at a maximum rate of 100 Hz

and minimum rate of 10 Hz. The cold gas thrusters

which are utilized in the ACS are actuated via electronic

relays with a 10 ms operation time and 5 ms release

time. Most critically, the maximum on/off switching

rate for the relays is approximately 2 Hz.

At the heart of the control loop are two discrete

PID controllers. Measurements from the IMU are taken

at a rate of 10 Hz, wherein the error is passed into the

controller. To transition between the rates of the sensor

and the thrusters, a moving average of the previous 5

outputs is performed, resulting in a total control output

value. This is then converted into a percentage - this

percentage dictates the length of the thruster pulse over

the next 0.5 seconds. In this way, the ACS uses pulse-

width modulation to accommodate the binary on/off

behavior of the thrusters and the maximum switching

rate.

Figure 10: ACS control loop illustrated. Roll, pitch and yaw are

controlled by parallel PID controllers, with roll and pitch set to an

angle of zero permanently.

Although the different controllers have been

separated as much as possible to aid in simplicity and

robustness, there still remained couplings between the

control systems. Some of these were determined to be

negligible, such as the vertical force induced by the 3N

cold gas thruster vs the 300N engine. However, it was

determined that the distance between the center of

gravity and center of thrust would determine how

negligible the other coupling effects would be, such as

the moment the engine makes on the vehicle when

gimballing. Due to this, tooling was developed during

the manufacturing and integration of the vehicle to

ensure all hardware would be positioned as designed.

Additionally, testing procedures were performed

following the vehicle’s integration to quantify the

location of the center of gravity.

Certain states of the system are not

commanded or controlled but do affect the way that the

vehicle responds to control forces. This includes the

mass properties of the vehicle, which change as the

engine and ACS fuel are depleted through the firing

duration. The loss of this mass changes the moments of

inertia, total mass, and center of mass of the vehicle. In

a Simulink six degree of freedom dynamics simulation

of the vehicle, the controllers were tuned so as to

maintain adequate control throughout the entire duration

of flight.

With the controllers tuned to satisfaction in

simulation, Simulink C++ Code generation is used on

the controllers to convert them into discrete C++

objects. These controller objects are then implemented

into the ROS2 flight control software and run at a

constant loop rate. By using code generation, it is

ensured that the controllers on the vehicle behave as

close to identically on our real time embedded hardware

as in the simulation.

 While the Simulink simulation is used to help

drive the development of the control system, testing

with hardware was required prior to their integration on

a flight test. Information regarding the control system

test beds is in Section 3.1.

2.4 Software

The software is developed on the backbone of

ROS2. It leverages ROS publisher subscriber, server

client and parameters for inter-node communication.

ROS2 was chosen for its serverless architecture, IPC

(Inter-process communication), and compatibility with

several plugins that simplify the software

implementation. Every sub-component runs as an

independent node to leverage the multi-processor

system, threads are used to run programs responsible for

continuous data collection and monitoring. Each

communication protocol UART and I2C has a thread

running which sends and receives data on the port

assigned to it at the time of initialization. The solution is

divided into 4 sub-packages namely, actuators, sensors,

communication, and monitoring.

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.

Copyright ©2021 by the International Astronautical Federation (IAF). All rights reserved.

IAC-21,D5,1,x65885 Page 7 of 11

Communication module establishes network

and port communication with different peripherals. It

parses the data and makes it available to the nodes. As

different sensors and actuators have different packet

structure being transmitted, it provides functionality for

encoding and decoding each packet. The sensor package

consumes the communication module to get raw data

and process it to generate information by implementing

filters and data pre-processing. Once the data is

processed, it is published to be consumed by other

modules.

Actuator module also uses the communication

module, primarily to communicate with the engine. The

other actuators are solenoid valves (digital) and linear

actuators (PWM). The engine has different commands

for setting engine states and retrieving information like

health and run statistics from it. All the controls are

wrapped into functions that are available as services.

The monitoring node is responsible for setting up

communication between the vehicle and ground station.

It also monitors system health and resource information.

There are simple contingency plans defined in case of

communication loss or component failure which takes

precedence in priority over any other tasks, keeping the

vehicle safe as much as possible.

Once the power is connected, the system boots

up and starts the program. The program initializes ROS

nodes mentioned above and checks all systems are

working. Then it tries to establish a connection with the

ground station. If it fails, it shuts down the system after

the timeout, else sends a heartbeat to the ground station.

The user can now send commands to test individual

components and monitor the vehicle wirelessly. Once

all the system is tested and verified, the GCS can be

used to send flight commands and waypoints. The

onboard control algorithms generate a plan and send

TVC commands to move the gimbal and control engine

thrust. The system status is relayed back to the ground

station for real time analysis.

During the flight testing phase, we

implemented a few features to the software architecture

based on our flight tests. The first feature is the ability

for the ground station to label each test flight,

streamlining the data processing stage of our test flights.

The second feature is maintaining the ACS system

while the vehicle goes into a shutdown sequence. This is

a safety-focused procedure since the vehicle must

always attempt to stabilize itself.

An important discovery during our flight

testing phase was that the location of the engine’s glow

plug did not allow for our engine to start upright. Our

solution was to tilt the engine 10 degrees in the pitch

direction using the gimbal, allowing the glow plug to

ignite the fuel.

In order for LEAPFROG to hover, the vehicle

must maintain its altitude and attitude. In order to

achieve altitude hover, the SEN0259 laser altimeter

continuously publishes height data to the engine node.

Utilizing a function call in the flight manager node, the

engine node receives the laser altimeter data and passes

the data into the altitude PID controller helper library.

The altitude PID controller generates a thrust value back

to the engine node which we send a thrust service

request to the JetCatP300. Using this communication

protocol, we are able to verify that the thrust values

change when the height of the vehicle changes.

Figure 11: Communication protocols for altitude hover

To achieve attitude hover, the MPU6050 sensor

continuously publishes IMU data to the ACS node.

Utilizing a function call from the flight manager node,

the ACS node receives the IMU data and passes it to the

attitude PID controller helper library. The attitude PID

controller generates a direction and time back to the

ACS node which we then actuate the corresponding

cold gas thrusters. Using this communication protocol,

we are able to verify the polarity of the ACS response

when disturbing the vehicle. Because of noisy IMU

data, it is a challenge to validate and tune the ACS

response.

Figure 12: Communication protocols for attitude hover

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.

Copyright ©2021 by the International Astronautical Federation (IAF). All rights reserved.

IAC-21,D5,1,x65885 Page 8 of 11

By leveraging the ROS2 communication

system, we are able to manage ground station inputs to

control the desired actuators and sensors on our vehicle.

The publisher / subscriber method allows for simple

communication between sensors and actuators. The

server / client method allows for control over the

functionalities of the vehicle, such as enabling and

disabling the ACS.

Our current obstacle is the noisy IMU data. We

believe we must pass the IMU data through a Kalman

filter before sending it to the ACS node in order for the

vehicle to get a more accurate representation of its

orientation. Another possible solution is to purchase an

IMU with built-in noise filters.

2.5 Avionics

The avionics onboard need to be low cost,

power efficient and reliable. To achieve this the system

is divided into 5 parts namely, compute, ACS, TVC,

communication and power. The compute module should

provide enough headers to connect all components and

enough computation power. The solenoids in ACS

should have fast actuation and sensors to provide

orientation information of the vehicle. TVC system

should provide gimbal action to the engine and control

the engine thrust with telemetry. The system should

have enough power for a single flight and redundancy

for backup. Lastly, the communication should be

encrypted and operate in the RC bandwidth without

overloading it.

 Communication between the vehicle and

ground station is done via bi-directional RF 900MHz

band. RFD900x transceiver is used which provides

AES256 encryption over air and UART communication

at 57600 bps between devices. To get relative position

and orientation of the vehicle there are a pair of

MPU6050 IMU sensors and SEN0259 LiDAR sensor.

The IMU sensor measures the acceleration along the

axes and orientation is calculated using the same with a

filter in the middle using I2C protocol. LiDAR polices

distance information from the surface at 100 Hz upto 12

meters using UART at 115200 bps. The absolute

position of the vehicle is collected using a GPS module

HERE3 which shares data using UART connection.

The flight system to control the orientation of

the vehicle is managed by the ACS. It is a configuration

of 4 + 2 cold gas solenoid valves which get actuated

using a relay board. The gimbal is moved using a pair of

linear actuators placed perpendicular to each other.

These actuators need to be light weight and should have

enough force to move the engine at full thrust. Each

actuator has a 2” stoke length which provides a gimbal

angle of 10 degree in each direction. To provide lift and

translation JetCat P300 engine is used to provide a

thrust upto 300N. The engine is industrial grade and

provides communication and control over UART.

 The software for the avionics control runs on a

Raspberry Pi 4. To have a clean design, power

distribution and connection a Pi shield has been added.

It provides multiple 5V and 3.3V lines and removes the

requirement of using a voltage splitter. There are 2

batteries on the vehicle, one to power the engine using

22.2V 6S LiPo and another 7.4V 2S LiPo to power the

solenoid valves. There is a UBEC voltage regulator

connected to the 7.4V battery to provide constant 5V to

the Pi. The Pi internally has a 3.3V regulator for running

the system and providing power to sensors connected to

it. All the avionics including engine and batteries share

a common ground to avoid a current backflow, which

could damage the electronics.

 The system wiring (ACS) is completely new,

flexible, thinner, clean and provides slack in case of

vehicle topple. The re-routing has been done in such a

way that the wiring is all internal and connects all the

components from under the housing, rather than the

outside of the vehicle. The wiring now caters to the

electronics individually and is therefore easily

replaceable in case of damage. It’s been done in such

way that the overstretching won’t cause any damage to

Figure 13: High-level connection diagram for on-board avionics

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.

Copyright ©2021 by the International Astronautical Federation (IAF). All rights reserved.

IAC-21,D5,1,x65885 Page 9 of 11

the avionics as well as the Attitude Control System

during extreme flight measure. All the electronics are

stationed together under one housing and provide rigid

support during static, tether as well as flight testing. The

housing protects the electronics from topple and

extreme weather conditions.

3. Testing Campaigns

3.1 Control System Test Beds

Prior to the full integration of the vehicle, the

two control systems, the TVC and the ACS, were

validated on their own stands that operated separately

from the flight vehicle. This allowed us to isolate

problems that were encountered in both of those

systems prior to their integration with the other

subsystems. Additionally, it allowed us to capture

important characteristics of the systems required for the

development of the control algorithm, such as response

times, maximum overshoot, time to steady state, and

others.

The attitude control system controllers are

tested via air bearing test stand. In this case, the vehicle,

or its mass analogue, is placed on an air bearing stand

with the IMU and the cold gas thrusters. Then, a

disturbance is applied to the air bearing vehicle. Parity

is checked to ensure that the correct thrusters are firing,

and settling time is measured to ensure that the

controller is behaving as expected. Yaw tests are

performed to ensure the vehicle behaves properly with

respect to yaw commands. After the air bearing test, the

altitude controller and the attitude controller are tested

in tandem on the vehicle via a tether test, explained in

Section 3.4.

 With this test successfully demonstrated, it is

planned to move into flying the vehicle in earnest, with

takeoff, translation, and landing sequences all

demonstrated. This would demonstrate working

performance of the thrust vector control, altitude

control, roll & pitch control, and yaw control.

 3.3 Static Hot Fires

 As mentioned in the above section,

LEAPFROG’s propulsion system consists of a JetCat

P300 Pro turbine engine that is gimbaled using a gimbal

manufactured in-house at the SERC lab and two linear

actuators. The goals of the static hot fires were oriented

around validating, demonstrating, and quantifying

various aspects of the propulsion system, and are shown

in Table 3.
Table 3: Goals of static hot fires categorized by subsystem

Characterizing the JetCat P300 Pro engine

required metrics that were needed for the control

algorithms to be quantified, such as the response time of

the engine over a variety of command sequences and the

maximum overshoot of the RPM. Figure 14 illustrates

this data collected on one firing, demonstrating the

correlation between the ability for the engine to proceed

through its firing states and the exhaust gas temperature.

Additionally, the tests provided engine metrics needed

for the development of other systems, such as the fuel

flow rates at various thrust levels and the power

consumption rates at various thrust levels.

These static hot fires were conducted using a

stand design specifically to hold the vehicle for these

Figure 14: Data collected during static hot fire plotted over the various engine states

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.

Copyright ©2021 by the International Astronautical Federation (IAF). All rights reserved.

IAC-21,D5,1,x65885 Page 10 of 11

tests. The vehicle integrated into this stand with all of

the associated hardware is seen in Figure 15.

Figure 15: Static hot fire stand prior to test

3.4 Tethered Tests

Rather than move directly from the static hot

fires to a free flight test, the team instead decided to run

the first flight tests with a tethered test stand to

minimize the potential for irreparable damage. As

shown in Figure 16, it uses a tether harness both above

and below the vehicle to localize which subsystems of

the vehicle are tested. The bottom tether allows for the

restriction of translational motion, so no use of the TVC

is required, and tests can focus exclusively on testing

the ACS’ control of rotational motion with all 6 degrees

of freedom. The top tether acts as a safeguard against

free fall should the engine abruptly cut out.

Figure 16: Integrated LEAPFROG supported by the tether test stand

Additionally, the tethered test makes it possible

to conduct the first flight tests on-site at the SERC lab,

meaning that more, shorter tests can be performed and

allowing for more targeted testing of the different

systems. If the only option had been to travel to a safe

location for free flight, due to the time requirements of

such a trip, it’s likely that longer tests and fewer trips

would have been prioritized. However, this would have

been suboptimal, as the purpose of testing is to uncover

issues and bugs in the vehicle, and a flexible testing

campaign is necessary.

Before performing an actual flight test using

the tethered stand, it was necessary to validate the stand

itself by performing a “dry run” of the tethered flight

test. During this test, the vehicle was hung from the

engine hoist using the tether harness to validate that the

test stand was capable of catching the vehicle, should it

begin to fall. Additionally, this time was utilized in

order to perform a test of the ACS system, which was

successful in decreasing the amount of swinging and

spinning the vehicle had been doing while hung.

Since the fuel is capable of keeping the engine

running for roughly 6 minutes, it’s clear that the vehicle

flight time is limited by the pressurized ACS air tanks,

and therefore a maximum hover of 1 minute was

planned. The procedure for the tether test stand was

simply to perform all of the engine checks completed

before each static hot fire, and then to command an

engine hover at increasing heights for increasing times

with the ACS program running. The maximum hover

height that the test stand was designed to support is 2

meters. By starting with a short hover for a short

amount of time, the team can validate the landing

procedures and limit the potential damage to the vehicle

should the vehicle come down sub-optimally.

4. Distribution and Accessibility

4.1 NASA Artemis STEM Pilot Project

Through California’s Space Grant, USC,

UCSD, and UCB were supported by NASA’s STEM

Pilot program for this effort. The ARTEMIS

LEAPFROG team was tasked to build and deliver

multiple flight-capable lunar lander prototypes that

could execute tasks in Earth’s gravity and atmosphere.

Additionally, the team was tasked with

organizing a national competition centered around this

vehicle as part of NASA’s goals to encourage hands-on

training for undergraduate and graduate students that

promote learning, teamwork, research, and enthusiasm

surrounding the Artemis project.

The initial plan for this competition called for

competitors to develop and demonstrate Artemis-

relevant systems engineering skills by building a lander

with materials provided by the LEAPFROG team and

then carefully flying it through a physical obstacle

course. However, due to the COVID-19 pandemic, this

version of the competition was altered, and a software

challenge only was introduced to accommodate the

circumstances. Instead of gathering teams from all over

the country to compete at one location, a full simulation

was built and communicated to teams from across the

United States to develop at their facilities.

Although the pandemic stymied progress on an

in-person national competition during the summer of

2021, plans to hold this competition as originally

72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.

Copyright ©2021 by the International Astronautical Federation (IAF). All rights reserved.

IAC-21,D5,1,x65885 Page 11 of 11

envisioned during the summer of 2022 are in

deliberation.

4.2 2021 Software Challenge

The LEAPFROG Software Simulation

Competition launched in the summer of 2021. The

competition was open to all university-affiliated

students throughout the United States. Competition

registration required teams to have one faculty member

as a contact point.

The first webinar was hosted on April 7th, 2021. We

introduced an overview of the LEAPFROG Competition

as a whole, and the software required to setup your

simulation environment. This included the basics of

PX4, ROS, Gazebo, and MavRos.

The second webinar was hosted on April 30th,

2021. The teams learned how to add new plugins to the

PX4 Software specific for the LEAPFROG vehicle and

simulation, and how to link the various software

elements together. We also provided more detailed

instructions on setting up the simulation environment,

and how it operates.

The third webinar was hosted on May 12th,

2021. We demonstrated how the teams might modify

the behavior of the LEAPFROG vehicle within the

simulation, and the teams also learned about our

competition scoring rubric.

The fourth webinar was hosted on May 21st,

2021. We broke down the scoring criteria in great detail,

showed an initial “lunar world” with craters for the

team’s use, and described how teams upload their

code/algorithms to the Software Challenge Github. We

also described how winners will get kits upon the final

scoring and notification.

We registered teams from New Mexico State

University, New Mexico Tech, University of Texas at

Austin, and University of Illinois at Urbana-Champaign.

We also had an internal team from UC Berkeley to test

various competition aspects.

At the end of the summer, we congratulated the

University of Illinois at Urbana-Champaign for winning

the inaugural LEAPFROG software competition! Their

team successfully navigated the LEAPFROG vehicle

and landed safely in a crater in our competition

simulation environment.

5. Conclusion

The LEAPFROG Artemis Challenge to be held

in the Summer of 2022 will be an integrated

demonstration of the LEAPFROG vehicle. We will have

three flight vehicles in three regions of the country in

which universities across the nation will have the

opportunity to fly their unique navigation based code on

LEAPFROG. Through the safety architecture

developed, the team is confident that the vehicle will be

able to detect and recover from off nominal flight

conditions, allowing university teams to repeatedly test

their innovative flight and landing algorithms on an

Earth based lunar lander testbed.

Acknowledgements

The authors thank the California Space Grant Authority

from the University of California San Diego, Dr. John

Kosmatka from UCSD, Mr. Dan Zevin from UC

Berkeley, the facility personnel at the Information

Sciences Institute, and the past alumni of the

LEAPFROG program from 2006 on!

