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Abstract 

A propulsive landing on the surface of an extraterrestrial body requires a robust vehicle with a guidance, 

navigation and control (GNC) system that is reliable, efficient and repeatable. Developing algorithms for these 

systems involves the creation of a mathematical model to simulate reality, and the testing of physical hardware to 

validate the results produced by the simulations. Unique design considerations for the structures are required for off-

nominal flight in 1G to avoid damage yet still allow the vehicle to re-fly quickly. The validation of experimental 

control algorithms requires the development of necessary infrastructure to iterate through a virtual to physical testing 

process, which is both time and cost intensive. The University of Southern California’s (USC) Space Engineering 

Research Center (SERC) in collaboration with the University of California at Berkeley (UCB) and the University of 

California at San Diego (UCSD) has developed such an infrastructure for an earth-based lunar landing test bed 

capable of validating experimental GNC algorithms with measures designed into both the hardware and software of 

the vehicle to mitigate failures in the event of off nominal flight conditions, allowing for innovative landing solutions 

to be repeatedly tested at a higher rate. The Lunar Entry Approach Platform For Research On the Ground 

(LEAPFROG) is a flight vehicle funded under a NASA Artemis STEM Competition Pilot award with the goal of 

supporting a nation-wide competition among universities. Powered by a central 300 N thrust turbine jet engine, the 

vehicle includes a cold gas attitude control system (ACS) to maintain stability, and a gimbal controlled by linear 

actuators to achieve thrust vector control (TVC) responsible for translation of the vehicle. Structurally, a number of 

innovations are built in for safety and reliability, including a composite based chassis and roll cage designed using 

Ansys Composite PrepPost (ACP) to support and protect the critical hardware, as well as a mechanical fuse allowing 

the frame and legs to avoid excessive loading in the event of a free fall. Additionally, the software architecture 

monitors competition teams’ inputs during flight that can override the controls and land the vehicle safely in the 

event of a policy violation. This paper will expand on the design and analyses of the features implemented in the 

structural and software designs that ensure a safe validation of innovative GNC algorithms on this lunar landing 

platform for use worldwide as a low-cost testbed for advanced technology testing. 

Keywords: lunar lander, control systems, lander structures, NASA Artemis Challenge  

 

1. Introduction  

1.1 NASA Artemis Challenge 

NASA’s Artemis Student Challenges are a set of 

NASA-funded competitions and initiatives that aim to 

engage undergraduate and graduate students and 

increase interest in the NASA Artemis Mission. These 

challenges revolve around finding solutions to common 

problems and anticipated hurdles during space flight 

and exploration.  

The LEAPFROG (Lunar Entry and Approach 

Platform for Research On Ground) challenge was 

organized by the University of California, San Diego in 

collaboration with the University of Southern 

California’s Space Engineering Research Center 

(SERC) and the University of California, Berkeley’s 
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Space Sciences Laboratory. This challenge aimed to 

engage undergraduate and graduate students across the 

nation in a Lunar Lander skills competition, wherein 

competitors gain and illustrate the ability to control a 

lunar lander prototype.  

The first version of LEAPFROG, Generation-0, was 

built by undergraduate students at USC’s SERC in 2006 

as a reusable ground-based flight simulator for lunar 

lander technology testing. Since then the project cycled 

through various iterations, changing designs based on 

project requirements at each stage. This version of 

LEAPFROG made for the NASA Artemis Challenge 

aimed to iterate on the past versions of the vehicle and 

create a deliverable that could be distributed to teams of 

students across the country in a safe and educational 

way.  

1.2 Vehicle Design Overview and Approach 

To promote the vehicle’s ability to safely validate 

experimental flight control algorithms, LEAPFROG 

was designed with five major subsystems: structures, 

propulsion, attitude control system, software, and 

avionics. Each subsystem was developed in accordance 

to the testing schedule created at the beginning of every 

semester. Priority for the team’s resources were given to 

those systems which were required for the most 

immediate testing campaign, which isolated the 

subsystems from one another during their development, 

allowing each to be fully validated prior to its 

integration with the vehicle and other subsystems. This 

approach aligns with the primary goal of the vehicle: to 

create a test bed with features embedded into the design 

that mitigate failures when off-nominal flight conditions 

occur.  

Figure 1 and Figure 2 show two views of the 

vehicle with the various subsystems and its global 

coordinate system which will be referred to throughout 

this paper. 

 
Figure 1: Side view of vehicle with labelled coordinate systems 

2. Vehicle Design 

2.1 Structures 

The structure was designed such that all 

hardware required for the various subsystems could be 

rigidly fixed to the vehicle in their appropriate positions 

while remaining under the maximum weight as 

determined by the maximum engine thrust and flight 

performance goals. To do so, the structure was designed 

with four main components: its chassis, mounting 

platforms, legs, and roll cage. All of which were made 

from composite materials to maximize the vehicle’s 

strength to weight ratio.  

 
Figure 2: Aerial view of vehicle with labelled coordinate systems 

The chassis consists of COTS half-inch, twill 

weave carbon fiber tubes from Rockwest configured in 

an octagonal structure as seen in Figure 3. On the first 

level, the central octagon supports the thrust of the 

engine, and the outer octagon supports the reaction 

forces of the linear actuators used for thrust vectoring 

the engine as well as providing mounting points for the 

struts used to connect the top layer to the bottom layer. 

The primary function of the top layer is to mount the 

engine fuel tanks, attitude control system air tanks, and 

avionics. The tubes were connected to each other using 

commercial off the shelf (COTS) threaded and 

unthreaded clevis connectors from Dragon Plate. 

 
Figure 3: Assembled carbon fiber chassis with legs integrated 

A chassis structural analysis was performed 

using an ABAQUS truss analysis simulation to 

determine the stresses within the chassis when the 

vehicle free falls from a 5-meter height. The result 

showed that the vertical carbon fiber struts experience 

significant tension and bending from the pulling of the 
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strings attached to the legs. This led to the addition of 

the mechanical fuses which will disconnect the strings 

and protect the chassis in the event of a hard landing. 

The mounting platforms provide a greater 

surface area to which the hardware can be fastened and 

adds rigidity to the chassis against moments in the x and 

y directions as established by the coordinate system in 

Figure 2. Both platforms are composite sandwiches 

manufactured in house with five pound density foam 

from FiberGlassSupply and two layers of fiberglass 

fabric impregnated with two part epoxy resin from 

WestSystems. The lay-up sandwich was placed under 

vacuum for 3 hours until cured. The fiberglass allows 

fasteners to clamp flanged mounts to the platforms 

without penetrating the foam. 

A protective vehicle roll cage was designed 

consisting of both an upper and lower structure. The 

upper roll cage was designed to protect the various 

avionics hardware and fuel tanks mounted on the top 

shelf of the vehicle in the event of a roll over. The lower 

roll cage was designed to protect the jet engine and 

bottom platform from being damaged in the event of the 

mechanical fuses disengaging. Both roll cage structures 

were analyzed using ABAQUS truss analysis simulation 

to confirm their protective capabilities in the intended 

situations. 

2.2 Vertical and Horizontal Propulsion 

LEAPFROG utilizes a JetCat P300 Pro engine, shown 

in Figure 4, to enable it to lift off the ground and 

simulate various levels of gravity. This is a COTS air-

breathing jet turbine engine fuelled by kerosene with the 

performance metrics as shown in Table 1. 

 
Figure 4: JetCat P300 Pro engine 

This engine simplifies the propulsion system 

due to its integrated design. The JetCat P300 Pro houses 

within itself the ECU, fuel pump, start valves, fuel filter, 

starter, pressure sensor, igniter, and glow plugs. Using 

an electric starter required a large energy output and 

therefore battery but allowed space and mass to be used 

on an auxiliary starting system. The only propulsion-

related hardware required to be integrated onto the 

vehicle is the remaining parts needed to complete the 

fuel system. 

 

Table 1: Performance metrics for JetCat P300 Pro engine 

 

The fuel system, as shown in the aerial view of 

the vehicle in Figure 5, consists of two Jet Model 

Products (JMP) T-33 fuel tank sets, COTS tanks made 

from fiberglass by Jet Tech. The four primary tanks are 

positioned about the center axis of the vehicle, forming 

a rough toroidal configuration about the air-inlet hole on 

the top platform. This allows the center of gravity of the 

fuel system to remain aligned with the center axis of the 

vehicle. However, this is only true assuming that the 

fuel draw distribution is even across the four tanks. To 

ensure this would occur, the fuel lines cut from each 

tank are the same length, resulting in an equal pressure 

drop over the path traveled from each tank. 

Additionally, the filling procedure of the tanks ensures 

that each begins with the same mass of fuel. During the 

hover flight testing campaign, tests were conducted to 

validate this assumption. 

 
Figure 5: Aerial view of fuel plumbing integrated on vehicle 

Each tank has a capacity of 52 ounces. This 

volume would allow for a flight time of approximately 8 

minutes. However, due to weight limitations, each tank 

is only filled with 0.8 kg of fuel resulting in a flight time 

of approximately 3 minutes. To decrease weight and 

complexity, no sensors were used to monitor the fuel 

levels during flight. Instead, a flight time calculator was 
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created to determine how much fuel remained in the 

tanks during tests. Mounting platforms for the tanks 

were 3D printed to match the shape of the tanks, 

allowing them to be strapped directly to the platforms. 

This design made the tanks rigid during flight, but able 

to be removed while weighing the tanks during the 

fueling process.  

To enable the vehicle to translate in X or Y 

axes, an in-house manufactured gimbal shown in is used 

for thrust vectoring the engine. Consisting of three rings 

and including attachment points both to the main 

structure and to the linear actuators, this enables the 

engine to be controlled in both pitch and yaw.  

 
Figure 6: Gimbal used to thrust vector the engine 

2.3 Control Systems 

The LEAPFROG control system performs two 

primary functions: ensuring the safe flight of the vehicle 

and performing legal commanded maneuvers. This 

design allows the vehicle to navigate as commanded 

through three-dimensional space as directed by the user, 

so long as the flight commands provided do not 

endanger the vehicle. This design philosophy for the 

vehicle control system was implemented to meet the 

design goal of providing a safe and reusable platform 

for testing and competition surrounding flight software.  

 The high-level command architecture of the 

LEAPFROG vehicle is split into two actors. The first is 

the competition or test code, which controls the gimbal 

and throttle of the engine as well as yaw of the vehicle 

to autonomously navigate translationally through three 

dimensions. The second actor is the vehicle flight 

software (FSW), which itself serves two purposes. 

Firstly, the FSW constantly actuates the cold gas 

subsystem to maintain the roll and pitch of the vehicle at 

level. Secondly, the FSW serves as a safety net for the 

test code. Because the test or competition code will, by 

nature, not be rigorously tested before implementation, 

it carries a higher degree of risk than would normally be 

acceptable. This is mitigated by allowing the flight 

software to automatically override illegal or dangerous 

commands provided by the test code. Some examples of 

such prohibited commands are putting the vehicle into 

too aggressive of a maneuver, or postponing landing 

beyond the point at which the vehicle runs out of fuel. 

The FSW also allows for manual commands to be sent 

in real time from the ground station, overriding the 

autonomous modules if it becomes apparent that the 

vehicle is behaving unsafely. 

 To further isolate test code from the vehicle’s 

FSW, the two modules are separated into different 

hardware. The FSW is run on a Raspberry Pi controller 

while the test code is run on a PX4 capable Cube, or 

PixHawk. This decision was made such that even if the 

test code were to, for instance, crash the process, the 

FSW itself will continue to run and allow the vehicle to 

safely land. The autonomous command flow 

architecture is shown in Figure 7 below. 

 
Figure 7: Control flow diagram. Flight manager determines whether 

control commands sent by PX4 Test Code is legal, and decides to use 

either command or built-in automatic control. 

Further description of the LEAPFROG control 

system begins with detailing variables which the system 

must keep track of and control: state variables. The state 

variables of the system fall under one of two categories: 

commanded state variables, and supplementary state 

variables. Commanded state variables are those which 

are set to target a desired value, upon which effectors 

are utilized to bring the measured value to the desired 

value via the implemented control scheme. 

Supplemental state variables describe aspects of the 

system which influence its behavior and may also be 

influenced by setting a desired state, but do not have a 

set point commanded. A list of state variables tracked 

by the control system is shown in Table 2 below. 

To illustrate this nomenclature, an example of 

the cold gas system is provided. The set point of the roll 

axis is to keep the vehicle level with respect to the 

ground. Thus, the roll angle is a commanded state 

variable. Cold gas thrusters are utilized to maintain the 

vehicle at level, and as the thrusters are fired, the 

amount of mass in the air tanks changes. This affects the 

dynamics of the vehicle and is kept track of using 

pressure transducers. However, the mass of the tanks is 

not controlled, so it is a supplementary state variable. 



72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25-29 October 2021.  

Copyright ©2021 by the International Astronautical Federation (IAF). All rights reserved. 

IAC-21,D5,1,x65885                           Page 5 of 11 

 The LEAPFROG control scheme maintains 

safe operations by bounding certain state variables into 

a legal range. The legal ranges of certain states – subject 

to change – are provided in Table 2. Should the test 

code send a command to the flight software that brings 

the vehicle outside of these legal ranges, the command 

will be overridden, and automatic emergency 

procedures will take over. These include righting the 

vehicle, slowing translation to a standstill, and 

performing a controlled landing. 

Table 2: System state variables. Control variables in white boxes, 

supplementary state variables in gray boxes. 

 

V_x Translational 

velocity in x 

2 m/s 

V_y Translational 

velocity in y 

2 m/s 

V_z Translational 

velocity in z 

1.5 m/s 

Alt Altitude above 

ground 

0-6 m 

R,P,Y_vehicle Vehicle roll, 

pitch, yaw 

0, 0, 0-360 

degrees 

Th_percent Percentage of 

total thrust 

85-100% 

R, P_gimbal Roll and pitch 

angle of gimbal 

|α,β| < 10 

degrees 

M_fuel Mass of 

kerosene fuel 

M > 15% 

M_gas (1-4) Mass of any 

cold gas tank 

M > 15% 

 

The overall control loop of the system can be 

broken down into three main sections: sensors, the 

control logic, and the effectors. The sensors of the 

system update the measured state variables, the control 

logic takes in the states and commands to actuate the 

effectors appropriately, and the effectors influence the 

physical state of the vehicle. The negative feedback 

loop continues indefinitely to minimize the error as new 

commands arrive and disturbances are imparted to the 

system.   

 The LEAPFROG control system is generally 

divided into two control schemes: engine control for 

translation and attitude control for rotation. These two 

schemes together have a mutually exclusive, completely 

exhaustive control over the six dynamic degrees of 

freedom of the vehicle. The negative feedback control 

loop including these two control schemes are illustrated 

in the figure below. 

 
Figure 8: Sensors, control modules, and effectors visualized in a 

control loop. 

 Navigation and controlling the translational 

motion of the vehicle in flight is the primary goal of the 

user-implemented control test code on the Pixhawk. The 

Pixhawk will be fed filtered altitude and acceleration 

data from the sensors, and can output commands to 

affect the gimbal angle and the engine thrust.  

 In the case that a state’s bounds have been 

exceeded, the flight manager will instead  enable the 

flight software’s automated engine control and will 

bypass the commands sent from the Pixhawk. The 

automated controller (FSW Engine Control) will 

attempt to lower the vehicle’s translational velocity and 

initiate a landing sequence. This architecture is 

visualized in Figure 9 below. 

 
Figure 9: Engine control loop illustrated. The altitude control is shown 

in red, while the X / Y velocity control is shown in orange. 
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 The cold gas system, or attitude control system 

(ACS) governs the rotational degrees of freedom of the 

vehicle: roll, pitch, and yaw. The goal of the controller 

is to maintain the vehicle in level flight and oriented in 

the correct direction by actuating the vehicle’s six cold 

gas thrusters. Roll and pitch control are outside the 

scope of the PixHawk controller and are always 

controlled autonomously.  

The ACS feedback loop begins with sensor 

measurement via the onboard WT61 IMU. This sensor 

has a built-in integrator and Kalman Filter to provide 

absolute angle feedback at a maximum rate of 100 Hz 

and minimum rate of 10 Hz. The cold gas thrusters 

which are utilized in the ACS are actuated via electronic 

relays with a 10 ms operation time and 5 ms release 

time. Most critically, the maximum on/off switching 

rate for the relays is approximately 2 Hz. 

At the heart of the control loop are two discrete 

PID controllers. Measurements from the IMU are taken 

at a rate of 10 Hz, wherein the error is passed into the 

controller. To transition between the rates of the sensor 

and the thrusters, a moving average of the previous 5 

outputs is performed, resulting in a total control output 

value. This is then converted into a percentage - this 

percentage dictates the length of the thruster pulse over 

the next 0.5 seconds. In this way, the ACS uses pulse-

width modulation to accommodate the binary on/off 

behavior of the thrusters and the maximum switching 

rate. 

 
Figure 10: ACS control loop illustrated. Roll, pitch and yaw are 

controlled by parallel PID controllers, with roll and pitch set to an 

angle of zero permanently. 

Although the different controllers have been 

separated as much as possible to aid in simplicity and 

robustness, there still remained couplings between the 

control systems. Some of these were determined to be 

negligible, such as the vertical force induced by the 3N 

cold gas thruster vs the 300N engine. However, it was 

determined that the distance between the center of 

gravity and center of thrust would determine how 

negligible the other coupling effects would be, such as 

the moment the engine makes on the vehicle when 

gimballing. Due to this, tooling was developed during 

the manufacturing and integration of the vehicle to 

ensure all hardware would be positioned as designed. 

Additionally, testing procedures were performed 

following the vehicle’s integration to quantify the 

location of the center of gravity.  

Certain states of the system are not 

commanded or controlled but do affect the way that the 

vehicle responds to control forces. This includes the 

mass properties of the vehicle, which change as the 

engine and ACS fuel are depleted through the firing 

duration. The loss of this mass changes the moments of 

inertia, total mass, and center of mass of the vehicle. In 

a Simulink six degree of freedom dynamics simulation 

of the vehicle, the controllers were tuned so as to 

maintain adequate control throughout the entire duration 

of flight. 

With the controllers tuned to satisfaction in 

simulation, Simulink C++ Code generation is used on 

the controllers to convert them into discrete C++ 

objects. These controller objects are then implemented 

into the ROS2 flight control software and run at a 

constant loop rate. By using code generation, it is 

ensured that the controllers on the vehicle behave as 

close to identically on our real time embedded hardware 

as in the simulation. 

 While the Simulink simulation is used to help 

drive the development of the control system, testing 

with hardware was required prior to their integration on 

a flight test. Information regarding the control system 

test beds is in Section 3.1. 

2.4 Software 

The software is developed on the backbone of 

ROS2. It leverages ROS publisher subscriber, server 

client and parameters for inter-node communication. 

ROS2 was chosen for its serverless architecture, IPC 

(Inter-process communication), and compatibility with 

several plugins that simplify the software 

implementation. Every sub-component runs as an 

independent node to leverage the multi-processor 

system, threads are used to run programs responsible for 

continuous data collection and monitoring. Each 

communication protocol UART and I2C has a thread 

running which sends and receives data on the port 

assigned to it at the time of initialization. The solution is 

divided into 4 sub-packages namely, actuators, sensors, 

communication, and monitoring. 
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Communication module establishes network 

and port communication with different peripherals. It 

parses the data and makes it available to the nodes. As 

different sensors and actuators have different packet 

structure being transmitted, it provides functionality for 

encoding and decoding each packet. The sensor package 

consumes the communication module to get raw data 

and process it to generate information by implementing 

filters and data pre-processing. Once the data is 

processed, it is published to be consumed by other 

modules. 

Actuator module also uses the communication 

module, primarily to communicate with the engine. The 

other actuators are solenoid valves (digital) and linear 

actuators (PWM). The engine has different commands 

for setting engine states and retrieving information like 

health and run statistics from it. All the controls are 

wrapped into functions that are available as services. 

The monitoring node is responsible for setting up 

communication between the vehicle and ground station. 

It also monitors system health and resource information. 

There are simple contingency plans defined in case of 

communication loss or component failure which takes 

precedence in priority over any other tasks, keeping the 

vehicle safe as much as possible. 

Once the power is connected, the system boots 

up and starts the program. The program initializes ROS 

nodes mentioned above and checks all systems are 

working. Then it tries to establish a connection with the 

ground station. If it fails, it shuts down the system after 

the timeout, else sends a heartbeat to the ground station. 

The user can now send commands to test individual 

components and monitor the vehicle wirelessly. Once 

all the system is tested and verified, the GCS can be 

used to send flight commands and waypoints. The 

onboard control algorithms generate a plan and send 

TVC commands to move the gimbal and control engine 

thrust. The system status is relayed back to the ground 

station for real time analysis. 

During the flight testing phase, we 

implemented a few features to the software architecture 

based on our flight tests. The first feature is the ability 

for the ground station to label each test flight, 

streamlining the data processing stage of our test flights. 

The second feature is maintaining the ACS system 

while the vehicle goes into a shutdown sequence. This is 

a safety-focused procedure since the vehicle must 

always attempt to stabilize itself.  

An important discovery during our flight 

testing phase was that the location of the engine’s glow 

plug did not allow for our engine to start upright. Our 

solution was to tilt the engine 10 degrees in the pitch 

direction using the gimbal, allowing the glow plug to 

ignite the fuel. 

In order for LEAPFROG to hover, the vehicle 

must maintain its altitude and attitude. In order to 

achieve altitude hover, the SEN0259 laser altimeter 

continuously publishes height data to the engine node. 

Utilizing a function call in the flight manager node, the 

engine node receives the laser altimeter data and passes 

the data into the altitude PID controller helper library. 

The altitude PID controller generates a thrust value back 

to the engine node which we send a thrust service 

request to the JetCatP300. Using this communication 

protocol, we are able to verify that the thrust values 

change when the height of the vehicle changes. 

 
Figure 11: Communication protocols for altitude hover 

To achieve attitude hover, the MPU6050 sensor 

continuously publishes IMU data to the ACS node. 

Utilizing a function call from the flight manager node, 

the ACS node receives the IMU data and passes it to the 

attitude PID controller helper library. The attitude PID 

controller generates a direction and time back to the 

ACS node which we then actuate the corresponding 

cold gas thrusters. Using this communication protocol, 

we are able to verify the polarity of the ACS response 

when disturbing the vehicle. Because of noisy IMU 

data, it is a challenge to validate and tune the ACS 

response.  

 
Figure 12: Communication protocols for attitude hover 
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By leveraging the ROS2 communication 

system, we are able to manage ground station inputs to 

control the desired actuators and sensors on our vehicle. 

The publisher / subscriber method allows for simple 

communication between sensors and actuators. The 

server / client method allows for control over the 

functionalities of the vehicle, such as enabling and 

disabling the ACS.  

Our current obstacle is the noisy IMU data. We 

believe we must pass the IMU data through a Kalman 

filter before sending it to the ACS node in order for the 

vehicle to get a more accurate representation of its 

orientation. Another possible solution is to purchase an 

IMU with built-in noise filters. 

2.5 Avionics 

The avionics onboard need to be low cost, 

power efficient and reliable. To achieve this the system 

is divided into 5 parts namely, compute, ACS, TVC, 

communication and power. The compute module should 

provide enough headers to connect all components and 

enough computation power. The solenoids in ACS 

should have fast actuation and sensors to provide 

orientation information of the vehicle. TVC system 

should provide gimbal action to the engine and control 

the engine thrust with telemetry. The system should 

have enough power for a single flight and redundancy 

for backup. Lastly, the communication should be 

encrypted and operate in the RC bandwidth without 

overloading it. 

 Communication between the vehicle and 

ground station is done via bi-directional RF 900MHz 

band. RFD900x transceiver is used which provides 

AES256 encryption over air and UART communication 

at 57600 bps between devices. To get relative position 

and orientation of the vehicle there are a pair of 

MPU6050 IMU sensors and SEN0259 LiDAR sensor. 

The IMU sensor measures the acceleration along the 

axes and orientation is calculated using the same with a 

filter in the middle using I2C protocol. LiDAR polices 

distance information from the surface at 100 Hz upto 12 

meters using UART at 115200 bps. The absolute 

position of the vehicle is collected using a GPS module 

HERE3 which shares data using UART connection. 

The flight system to control the orientation of 

the vehicle is managed by the ACS. It is a configuration 

of 4 + 2 cold gas solenoid valves which get actuated 

using a relay board. The gimbal is moved using a pair of 

linear actuators placed perpendicular to each other. 

These actuators need to be light weight and should have 

enough force to move the engine at full thrust. Each 

actuator has a 2” stoke length which provides a gimbal 

angle of 10 degree in each direction. To provide lift and 

translation JetCat P300 engine is used to provide a 

thrust upto 300N. The engine is industrial grade and 

provides communication and control over UART. 

 The software for the avionics control runs on a 

Raspberry Pi 4. To have a clean design, power 

distribution and connection a Pi shield has been added. 

It provides multiple 5V and 3.3V lines and removes the 

requirement of using a voltage splitter. There are 2 

batteries on the vehicle, one to power the engine using 

22.2V 6S LiPo and another 7.4V 2S LiPo to power the 

solenoid valves. There is a UBEC voltage regulator 

connected to the 7.4V battery to provide constant 5V to 

the Pi. The Pi internally has a 3.3V regulator for running 

the system and providing power to sensors connected to 

it. All the avionics including engine and batteries share 

a common ground to avoid a current backflow, which 

could damage the electronics. 

 The system wiring (ACS) is completely new, 

flexible, thinner, clean and provides slack in case of 

vehicle topple. The re-routing has been done in such a 

way that the wiring is all internal and connects all the 

components from under the housing, rather than the 

outside of the vehicle. The wiring now caters to the 

electronics individually and is therefore easily 

replaceable in case of damage. It’s been done in such 

way that the overstretching won’t cause any damage to 

 
Figure 13: High-level connection diagram for on-board avionics 
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the avionics as well as the Attitude Control System 

during extreme flight measure. All the electronics are 

stationed together under one housing and provide rigid 

support during static, tether as well as flight testing. The 

housing protects the electronics from topple and 

extreme weather conditions. 

3. Testing Campaigns  

3.1 Control System Test Beds 

Prior to the full integration of the vehicle, the 

two control systems, the TVC and the ACS, were 

validated on their own stands that operated separately 

from the flight vehicle. This allowed us to isolate 

problems that were encountered in both of those 

systems prior to their integration with the other 

subsystems. Additionally, it allowed us to capture 

important characteristics of the systems required for the 

development of the control algorithm, such as response 

times, maximum overshoot, time to steady state, and 

others.  

The attitude control system controllers are 

tested via air bearing test stand. In this case, the vehicle, 

or its mass analogue, is placed on an air bearing stand 

with the IMU and the cold gas thrusters. Then, a 

disturbance is applied to the air bearing vehicle. Parity 

is checked to ensure that the correct thrusters are firing, 

and settling time is measured to ensure that the 

controller is behaving as expected. Yaw tests are 

performed to ensure the vehicle behaves properly with 

respect to yaw commands. After the air bearing test, the 

altitude controller and the attitude controller are tested 

in tandem on the vehicle via a tether test, explained in 

Section 3.4. 

 With this test successfully demonstrated, it is 

planned to move into flying the vehicle in earnest, with 

takeoff, translation, and landing sequences all 

demonstrated. This would demonstrate working 

performance of the thrust vector control, altitude 

control, roll & pitch control, and yaw control. 

 3.3 Static Hot Fires 

 As mentioned in the above section, 

LEAPFROG’s propulsion system consists of a JetCat 

P300 Pro turbine engine that is gimbaled using a gimbal 

manufactured in-house at the SERC lab and two linear 

actuators. The goals of the static hot fires were oriented 

around validating, demonstrating, and quantifying 

various aspects of the propulsion system, and are shown 

in Table 3. 
Table 3: Goals of static hot fires categorized by subsystem 

 
Characterizing the JetCat P300 Pro engine 

required metrics that were needed for the control 

algorithms to be quantified, such as the response time of 

the engine over a variety of command sequences and the 

maximum overshoot of the RPM. Figure 14 illustrates 

this data collected on one firing, demonstrating the 

correlation between the ability for the engine to proceed 

through its firing states and the exhaust gas temperature. 

Additionally, the tests provided engine metrics needed 

for the development of other systems, such as the fuel 

flow rates at various thrust levels and the power 

consumption rates at various thrust levels. 

These static hot fires were conducted using a 

stand design specifically to hold the vehicle for these 

 
Figure 14: Data collected during static hot fire plotted over the various engine states 
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tests. The vehicle integrated into this stand with all of 

the associated hardware is seen in Figure 15. 

 
Figure 15: Static hot fire stand prior to test 

3.4 Tethered Tests 

Rather than move directly from the static hot 

fires to a free flight test, the team instead decided to run 

the first flight tests with a tethered test stand to 

minimize the potential for irreparable damage. As 

shown in Figure 16, it uses a tether harness both above 

and below the vehicle to localize which subsystems of 

the vehicle are tested. The bottom tether allows for the 

restriction of translational motion, so no use of the TVC 

is required, and tests can focus exclusively on testing 

the ACS’ control of rotational motion with all 6 degrees 

of freedom. The top tether acts as a safeguard against 

free fall should the engine abruptly cut out.  

 
Figure 16: Integrated LEAPFROG supported by the tether test stand 

Additionally, the tethered test makes it possible 

to conduct the first flight tests on-site at the SERC lab, 

meaning that more, shorter tests can be performed and 

allowing for more targeted testing of the different 

systems. If the only option had been to travel to a safe 

location for free flight, due to the time requirements of 

such a trip, it’s likely that longer tests and fewer trips 

would have been prioritized. However, this would have 

been suboptimal, as the purpose of testing is to uncover 

issues and bugs in the vehicle, and a flexible testing 

campaign is necessary. 

Before performing an actual flight test using 

the tethered stand, it was necessary to validate the stand 

itself by performing a “dry run” of the tethered flight 

test. During this test, the vehicle was hung from the 

engine hoist using the tether harness to validate that the 

test stand was capable of catching the vehicle, should it 

begin to fall. Additionally, this time was utilized in 

order to perform a test of the ACS system, which was 

successful in decreasing the amount of swinging and 

spinning the vehicle had been doing while hung. 

Since the fuel is capable of keeping the engine 

running for roughly 6 minutes, it’s clear that the vehicle 

flight time is limited by the pressurized ACS air tanks, 

and therefore a maximum hover of 1 minute was 

planned. The procedure for the tether test stand was 

simply to perform all of the engine checks completed 

before each static hot fire, and then to command an 

engine hover at increasing heights for increasing times 

with the ACS program running. The maximum hover 

height that the test stand was designed to support is 2 

meters. By starting with a short hover for a short 

amount of time, the team can validate the landing 

procedures and limit the potential damage to the vehicle 

should the vehicle come down sub-optimally.   

4. Distribution and Accessibility  

4.1 NASA Artemis STEM Pilot Project 

Through California’s Space Grant, USC, 

UCSD, and UCB were supported by NASA’s STEM 

Pilot program for this effort. The ARTEMIS 

LEAPFROG team was tasked to build and deliver 

multiple flight-capable lunar lander prototypes that 

could execute tasks in Earth’s gravity and atmosphere.  

Additionally, the team was tasked with 

organizing a national competition centered around this 

vehicle as part of NASA’s goals to encourage hands-on 

training for undergraduate and graduate students that 

promote learning, teamwork, research, and enthusiasm 

surrounding the Artemis project.  

The initial plan for this competition called for 

competitors to develop and demonstrate Artemis-

relevant systems engineering skills by building a lander 

with materials provided by the LEAPFROG team and 

then carefully flying it through a physical obstacle 

course. However, due to the COVID-19 pandemic, this 

version of the competition was altered, and a software 

challenge only was introduced to accommodate the 

circumstances. Instead of gathering teams from all over 

the country to compete at one location, a full simulation 

was built and communicated to teams from across the 

United States to develop at their facilities.  

Although the pandemic stymied progress on an 

in-person national competition during the summer of 

2021, plans to hold this competition as originally 
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envisioned during the summer of 2022 are in 

deliberation.  

4.2 2021 Software Challenge 

The LEAPFROG Software Simulation 

Competition launched in the summer of 2021. The 

competition was open to all university-affiliated 

students throughout the United States. Competition 

registration required teams to have one faculty member 

as a contact point. 

The first webinar was hosted on April 7th, 2021. We 

introduced an overview of the LEAPFROG Competition 

as a whole, and the software required to setup your 

simulation environment. This included the basics of 

PX4, ROS, Gazebo, and MavRos.  

The second webinar was hosted on April 30th, 

2021. The teams learned how to add new plugins to the 

PX4 Software specific for the LEAPFROG vehicle and 

simulation, and how to link the various software 

elements together. We also provided more detailed 

instructions on setting up the simulation environment, 

and how it operates.  

The third webinar was hosted on May 12th, 

2021. We demonstrated how the teams might modify 

the behavior of the LEAPFROG vehicle within the 

simulation, and the teams also learned about our 

competition scoring rubric.  

The fourth webinar was hosted on May 21st, 

2021. We broke down the scoring criteria in great detail, 

showed an initial “lunar world” with craters for the 

team’s use, and described how teams upload their 

code/algorithms to the Software Challenge Github. We 

also described how winners will get kits upon the final 

scoring and notification. 

We registered teams from New Mexico State 

University, New Mexico Tech, University of Texas at 

Austin, and University of Illinois at Urbana-Champaign. 

We also had an internal team from UC Berkeley to test 

various competition aspects. 

At the end of the summer, we congratulated the 

University of Illinois at Urbana-Champaign for winning 

the inaugural LEAPFROG software competition! Their 

team successfully navigated the LEAPFROG vehicle 

and landed safely in a crater in our competition 

simulation environment. 

5. Conclusion   

The LEAPFROG Artemis Challenge to be held 

in the Summer of 2022 will be an integrated 

demonstration of the LEAPFROG vehicle. We will have 

three flight vehicles in three regions of the country in 

which universities across the nation will have the 

opportunity to fly their unique navigation based code on 

LEAPFROG. Through the safety architecture 

developed, the team is confident that the vehicle will be 

able to detect and recover from off nominal flight 

conditions, allowing university teams to repeatedly test 

their innovative flight and landing algorithms on an 

Earth based lunar lander testbed. 
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