Publications
Factuality challenges in the era of large language models and opportunities for fact-checking
Abstract
The emergence of tools based on large language models (LLMs), such as OpenAI’s ChatGPT and Google’s Gemini, has garnered immense public attention owing to their advanced natural language generation capabilities. These remarkably natural-sounding tools have the potential to be highly useful for various tasks. However, they also tend to produce false, erroneous or misleading content—commonly referred to as hallucinations. Moreover, LLMs can be misused to generate convincing, yet false, content and profiles on a large scale, posing a substantial societal challenge by potentially deceiving users and spreading inaccurate information. This makes fact-checking increasingly important. Despite their issues with factual accuracy, LLMs have shown proficiency in various subtasks that support fact-checking, which is essential to ensure factually accurate responses. In light of these concerns, we explore issues …
- Date
- January 1, 1970
- Authors
- Isabelle Augenstein, Timothy Baldwin, Meeyoung Cha, Tanmoy Chakraborty, Giovanni Luca Ciampaglia, David Corney, Renee DiResta, Emilio Ferrara, Scott Hale, Alon Halevy, Eduard Hovy, Heng Ji, Filippo Menczer, Ruben Miguez, Preslav Nakov, Dietram Scheufele, Shivam Sharma, Giovanni Zagni
- Source
- Nature Machine Intelligence
- Volume
- 6
- Issue
- 8
- Pages
- 852-863
- Publisher
- Nature Publishing Group UK